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Abstract

We study bargaining over contingent contracts in problems where private in-

formation becomes public or verifiable when the time comes to implement the

agreement. We suggest a simple, two-stage game that incorporates important

aspects of bargaining. We characterize equilibria in which parties always reach

agreement, and study their limits as bargaining frictions vanish. Under mild

regularity conditions, we show all interim-efficient limits belong to Myerson

(1984)’s axiomatic solution. Furthermore, all limits must be interim-efficient

if equilibria are required to be sequential. Results extend to other bargaining

protocols.
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1 Introduction

Parties often come to the bargaining table holding private information. If that infor-

mation becomes public upon the agreement’s implementation, then the terms of the

contract can be made contingent on that future information. Contingent contracts

play a central role in many economic models. Arrow-Debreu securities, options, fu-

tures and other derivatives are all contingent contracts. The first appearance of con-

tingent contracts to study cooperation under incomplete information dates back to

Wilson (1978). Bazerman and Gillespie (1999) emphasize to practitioners the impor-

tance of considering contingent contracts in different bargaining scenarios, including

those with incomplete information. But which specific terms should one expect as a

result of negotiations?

For instance, suppose a laptop manufacturer and a microchip supplier bargain over

future monetary proceeds. The supplier knows whether it will be able to provide an

older chip (Old) or a new-generation chip (New) by the date production starts. The

laptop manufacturer knows the type of the other components it will use in the laptop

(e.g. screen, memory modules, fan, etc.). The components may be relatively old (Old)

or of the newest generation (New). This gives rise to four ex-post verifiable states

of the world, (Old,Old), (Old,New), (New,Old) and (New,New). The sales profit

when the manufacturer uses the older components is $12M independently of the chip,

as old components cannot exploit the benefits of the new chip. Fitting an older chip

in a machine with new components lowers profit to $9M due to compatibility issues,

while machines with the newest-generation components and chip generate the highest

profit, $15M . The laptop manufacturer and the chip supplier each believe the other

has probability 1/2 of having new-generation hardware available when production

starts. The laptop manufacturer is risk neutral (u1(x) = x) while the chip supplier,

a privately held firm, is risk averse (u2(x) =
√
x). The ex-post utility set in state t

for a given profit M(t) ∈ {9, 12, 15} is then U(t) = {v ∈ R2
+ : v1 + v2

2 ≤M(t)}.
The Nash bargaining solution is focal in complete information settings. When

information is incomplete, as in the above example, writing a contract that picks the

Nash bargaining solution for each ex-post informational state may sound reasonable

at first. Given a profit m, the Nash solution is obtained by maximizing (m − v2
2)v2,

the product of utilities over the feasible utility set, and results in giving one-third of

the profit to the chip supplier. Thus, the ex-post Nash contingent contract distributes
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profits as follows:

Ex-post Nash Old Chip New Chip

Old Components $8M, $4M $8M, $4M

New Components $6M, $3M $10M, $5M

Notice that whatever his type, the chip supplier faces a substantial risk of ±$0.5M

with equal probability. This is inefficient at the interim stage, that is, given the

bargainers’ information when they negotiate. For instance, it is possible to rearrange

the laptop manufacturer’s payoff, while keeping his expected utility constant, to con-

struct a contingent contract that fully insures the chip supplier. This inefficiency is

quite pervasive: settling on ex-post Nash solutions is generically interim-inefficient in

smooth bargaining problems (see the Online Appendix).1 Of course, there are many

possible interim efficient contracts. What would be reasonable, interim efficient terms

of trade?

Providing a first answer, Harsanyi and Selten (1972) and Myerson (1984) axiomat-

ically characterize two distinct extensions of the Nash bargaining solution to related

incomplete information settings (that impose interim efficiency as an axiom). Loosely

speaking, Harsanyi-Selten’s solution selects contingent contracts that maximize the

probability-weighted product of interim utilities. Applied to our example, it awards

the chip-supplier with $4M in all states of the world:

Harsanyi-Selten Old Chip New Chip

Old Components $8M, $4M $8M, $4M

New Components $5M, $4M $11M, $4M

Myerson’s solution, on the other hand, selects contingent contracts that are both

equitable and efficient for a rescaling of the interim utilities. In general, it incorporates

agents’ incentive constraints to truthfully reveal their type, but these constraints are

not needed in our setting with verifiable types. Applied to our example, it rewards

the chip supplier with $4.5M for a newer chip (associated with weakly larger profits)

but gives him only $3.5M for an old chip, irrespective of the laptop maker’s type:

Myerson Old Chip New Chip

Old Components $8.5M, $3.5M $7.5M, $4.5M

New Components $5.5M, $3.5M $10.5M, $4.5M

1If ex-post Nash happens to be interim efficient in a bargaining problem where both agents have
at least two types, then it becomes inefficient when one agent’s utility is rescaled in some state.
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As an alternative to axioms, we can also adopt a non-cooperative approach, study-

ing equilibrium outcomes of bargaining games, and their properties. Remarkably, in

a wide variety of complete information bargaining games, those outcomes have been

found to be close to Nash’s axiomatic solution. What happens under incomplete

information? The vast existing literature on noncooperative bargaining under in-

complete information (see surveys by Osborne and Rubinstein (1990), Binmore et al.

(1992), Kennan and Wilson (1993) and Ausubel et al. (2002)) provides no answer due

its almost exclusive focus on bargaining over direct terms of trade (e.g. what quan-

tity to trade at what price), instead of considering contingent contracts or incentive

compatible mechanisms (as envisaged by the earlier axiomatic papers).2

In this paper, we follow the non-cooperative approach and find a surprising link be-

tween equilibrium outcomes and Myerson’s extension of the Nash solution, in a simple

two-stage bargaining game with contingent contracts.3 The first stage of the game is a

demand/offer stage, where each bargainer independently suggests a state-contingent

contract. The second stage is a bargaining posture stage, where each bargainer inde-

pendently decides whether to insist on her own contract, or to be conciliatory and

accept her opponent’s contract. When both parties are conciliatory, bargaining is

equally likely to end with an agreement on either contract. If an agent insists on her

own contract, her aggressiveness leads to a (small) probability of disagreement even

when her opponent is conciliatory. If both insist, there is disagreement.

2Bargaining over contingent contracts was first studied in de Clippel and Minelli (2004). Aside
from providing axiomatic results, they suggest a stringent refinement to obtain Myerson (1983)’s
principal-agent solution as equilibrium outcomes of the simple take-it-or-leave-it offer protocol.
Clearly, this protocol entirely favors the agent making the offer, and outcomes are generally un-
related to Myerson (1984)’s bargaining solution. By contrast, in our bargaining game below, both
agents enjoy equal opportunities, which completely changes the analysis and results. Kim (2017)
studies a narrow class of bargaining problems where Myerson (1983)’s principal-agent and Myer-
son (1984)’s bargaining solutions do coincide. Again, standard refinements fail to select Myerson’s
solution in the take-it-or-leave-it offer protocol, but Myerson (1989)’s ‘coherent’ equilibria do.

3Given its prominence under complete information, an alternating-offers protocol is another nat-
ural choice. But the repeated offers’ potential for signaling and information leakage makes it very
challenging to analyze. Even in our simpler game, the analysis is far from trivial. Okada (2016) con-
siders that environment, but imposes three stringent refinements that effectively require demands
to match those under complete information in every state, which therefore imply convergence to
the ex-post Nash solution as agents become patient. In particular, he requires that demands don’t
change even if agents’ learn about the state from their opponent’s behavior, and each type inter-
prets deviations as coming from opponent types that would strictly benefit ex-post from such a
proposal if accepted. Without the first requirement, it is easy to construct examples where many
interim-efficient contracts are supported as weak PBE. The second requirement necessarily violates
the standard no-signalling-what-you-don’t-know principle.
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Though simple, this protocol encompasses some basic features of bargaining, with

offers, demands, and posturing. The posturing stage with its risk of disagreement

when one bargainer insists is a natural way to introduce frictions into the Nash ‘de-

mand game’, thereby circumventing the well-known, anything-goes situation that

arises otherwise. We are particularly interested in what happens when frictions are

vanishingly small. Our payoff structure is rather general and can accommodate differ-

ent scenarios. For instance, it corresponds to an environment where offers go astray

with positive probability (a model studied by Evans (2003) under complete informa-

tion), as well as an environment where each party’s acceptance of the other’s proposal

is stochastically delayed. Our equilibrium characterization and results also extend to

stationary equilibria when posturing is modeled as a war of attrition.

Our main results go as follows. We first characterize a focal set of equilibria:

those in which bargainers formulate deterministic (pure-strategy) demands and are

conciliatory on path, so they always reach an agreement after equilibrium demands.

We call these ‘conciliatory equilibria’. Under complete information, there is a unique

pure strategy equilibrium, which is also the only conciliatory equilibrium; and it con-

verges to the Nash bargaining solution as bargaining frictions vanish. What happens

as frictions vanish under incomplete information? Under some mild conditions on

the bargaining problem, we show that interim-efficient limits of conciliatory equilib-

ria not only exist, but must all be Myerson solutions. Moreover, all limits must be

interim efficient when conciliatory equilibria satisfy Fudenberg and Tirole (1991)’s ‘no-

signalling-what-you-don’t-know’ principle. Imposing this principle on weak perfect-

Bayesian equilibrium corresponds to a natural extension of sequential equilibrium in

our infinite game. Combining these results, we get a strong prediction: under mild

conditions, all limits of sequential, conciliatory equilibria are Myerson solutions.

Beyond their stand-alone value, our results combined with those of Myerson (1984)

can be seen as an extension of the ‘Nash program’ (of justifying a solution both ax-

iomatically and non-cooperatively) to problems of incomplete information. Our re-

sults suggest that cross-agent and cross-type tradeoffs in the solution that Myerson de-

rived axiomatically are, at some level, well justified. Even without requiring equilibria

to be sequential, we can rule out non-Myerson interim-efficient solutions, including the

Harsanyi-Selten solution. This is quite unusual for two-sided, incomplete-information

bargaining problems, where the opportunity to interpret deviations as coming from

an opponent’s ‘worst’ possible type can often make the equilibrium set so large that it
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is hard to say anything meaningful about expected outcomes (e.g. see the discussion

in Ausubel et al. (2002)). The ability to offer contingent contracts in our setting helps

limit the power of ‘punishing with beliefs,’ because an agent can offer a contract that

would be acceptable to his opponent in every state of the world, and so secure payoffs

associated with his true type (see the notion of best-safe payoff in Section 3.2).

We believe the setting of verifiable information is interesting in its own right.

However, we also hope it provides a building block for the analysis of more general

bargaining settings in which parties have unverifiable private information, in which

case they would bargain over communication protocols (or mechanisms) to determine

how the agreement might vary with the information they share. This is a topic we

hope to address in future work. Our ability to rule out any non-Myerson outcome in

the case of verifiable types, certainly provides grounds for skepticism of the reason-

ableness of non-Myerson solutions with non-verifiable types.

2 Framework

We consider an incomplete-information setting with two agents at the bargaining

table. Agent i = 1, 2 has a finite set of possible types Ti. For now, we assume agents

share a common prior p with full support over the type profiles (also called states)

in T = T1 × T2. Results extend to non-common priors, as discussed in Section 5.2.

The set of states consistent with type ti is defined as T (ti) = {t̂ ∈ T : t̂i = ti}. These

states become public or verifiable when the time comes to implement an agreement.

Each type profile t ∈ T is associated with an ex-post utility possibility set (or

feasible utility set) U(t) ⊂ R2
+. The collection of ex-post utility sets is U = ×t∈TU(t).

We assume U(t) is convex, compact, and contains its disagreement point (0, 0) for all

t ∈ T (e.g., absence of trade or production). The assumption that all ex-post utilities

are larger or equal to the disagreement payoff (U(t) ⊂ R2
+) is substantive, but is met

in many applications and must hold if agents retain the possibility of taking their

disagreement payoff at the ex-post stage. A bargaining problem is summarized by the

tuple B = (T, U, p).

Let ui(t) be the highest utility that Agent i can get in state t; and let ui(t) be the

highest utility i can get conditional on j getting uj(t):
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ui(t) = max
u∈U(t)

ui

ui(t) = max
u∈U(t): uj=uj(t)

ui,

for i = 1, 2. If U(t) has no flat part, then agent i would pick (uj(t), ui(t)) if he

were a dictator. If multiple options achieve his best utility ui(t), then i would be

indifferent between all of them, and (uj(t), ui(t)) is the one that is most favorable to

j (guaranteeing ex-post efficiency). We assume throughout that ui(t) > ui(t) for all

t, so that there is always something to bargain over.

We study the bargaining problem B at the interim stage: each agent knows his

own type, but not the type of his opponent. Formally, a bargaining agreement is

a contingent contract u ∈ U , which associates a utility profile u(t) ∈ U(t) for each

t ∈ T . Different bargaining problems may involve different underlying variables (e.g.,

the split of profits, the quantity or price of a good to be sold, the time a service

is rendered). Describing a bargaining agreement by the resulting utility profiles is a

notationally convenient and unifying device to encapsulate bargainers’ considerations.

Agents evaluate a contingent contract by its expected utility, with beliefs re-

garding the other’s type derived from the prior p by Bayes’ rule. The expected

utility from the contingent contract u to bargainer i of type ti ∈ Ti is:

E[ui|ti] =
∑
t∈T (ti)

p(t|ti)ui(t).

The contingent contract x is interim efficient if it is not interim-Pareto dominated

by another contingent contract; that is, there is no u ∈ U such that E[ui|ti] ≥ E[xi|ti]
for all i and ti, with strict inequality for some i and ti.

4 The contingent contract x is

ex-post efficient if, for every t ∈ T , x(t) is Pareto efficient within U(t); that is, for all

t, there is no a ∈ U(t) with ai ≥ xi(t) for all i and strict inequality for some i.

Our verifiable-state product structure (T = T1 × T2) fits many settings of private

information, but not all. For instance, firms considering a joint venture may have pri-

vate information about the variety of outputs they can produce and the prices those

outputs will fetch, the availability of different inputs and their prices, the physical

locations of and existing contracts with suppliers and customers, all of which might

4Aside from introducing interim efficiency, Holmström and Myerson (1983) also discusses the
related, strategic notion of durability. They show the two concepts are distinct in general. It is easy
to check they coincide in our context (contingent contracts without IC constraints).
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become verifiable ex-post. It does not, however, fit situations where there is a ver-

ifiable state of the world (e.g. the weather, future stock prices) which agents have

unverifiable beliefs about.

Despite calling U(t) an ex-post utility set, residual uncertainty may be present

even after the state is known. For instance, suppose an oil Firm 1 already conducted

a survey of oil reserves in different locations, while an engineering Firm 2 conducted a

survey on the difficulty of oil extraction and transportation at those locations. These

surveys represent agents’ verifiable types. When pooled, they allow firms to extract

oil from an optimal location, although the quantity of oil and the extraction costs

remain random variables.

2.1 Efficiency and Weighted Utilitarianism

The interim utility-possibility set U(B) is the set of interim utilities (E[xi|ti])i,ti achiev-

able through contracts x for the bargaining problem B. This set inherits compactness

and convexity from each U(t). By the supporting-hyperplane theorem, if a contract x

is interim efficient, then there is a nonzero vector of weights λ̂ = (λ̂i(ti))i,ti ∈ RT1
+ ×RT2

+

such that
∑

i=1,2

∑
ti∈Ti λ̂i(ti)E[ui|ti] is maximized within U(B) by the contract u = x.

In this case, we say λ̂ is interim orthogonal to U(B) at x.5 Similarly, for each t ∈ T , if

x(t) is Pareto efficient within U(t) then there is a nonzero vector of weights λ(t) ∈ R2
+

such that
∑

i=1,2 λi(t)ai(t) is maximized within U(t) by the allocation x(t). In this

case, we say λ(t) is ex-post orthogonal to U(t) at x(t). The lemma below summarizes

useful relationships, and is proved in the Online Appendix.

Lemma 1. The following relationships hold:

(i) If the allocation rule x is interim efficient, then it is ex-post efficient.

(ii) If x is interim efficient, then there is a non-zero λ̂ ∈ RT1
+ ×RT2

+ which is interim

orthogonal to U(B) at x. Conversely, if a vector λ̂ ∈ RT1
++ × RT2

++ is interim

orthogonal to U(B) at x, then x is interim efficient.

(iii) If x is ex-post efficient, then for each t ∈ T there is a non-zero λ(t) ∈ R2
+

which is ex-post orthogonal to U(t) at x(t). Conversely, if λ(t) ∈ R2
++ is ex-post

orthogonal to U(t) at x(t) for each t, then x is ex-post efficient.
5More formally, λ̂ is orthogonal to U(B) at the interim utility vector associated with x.
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(iv) λ̂ ∈ RT1
+ × RT2

+ is interim orthogonal to U(B) at x if, and only if, λ(t) =(
λ̂1(t1)
p(t1)

, λ̂2(t2)
p(t2)

)
is ex-post orthogonal to U(t) at x(t) for all t ∈ T .

We will sometimes assume the bargaining problem is smooth, meaning for each t

and ex-post efficient u� 0 in U(t), there is a unique orthogonal vector to U(t) at u.

2.2 Myerson Solution

Under complete information, the Nash bargaining solution is obtained by maximizing

the product of the two agents’ utility gains over the utility possibility set. The ex-

post Nash solution gives agents the Nash solution in every state of the world. While

this solution is clearly ex-post efficient, it is generically interim inefficient for smooth

bargaining problems (see Online Appendix).

In the hope of attaining interim efficiency, one way to extend Nash’s solution to

accommodate incomplete information would be to introduce some interim welfare

function W and maximize it over the set of all feasible contingent contracts. This is

in fact the path followed by Harsanyi and Selten (1972) whose bargaining solution

adapted to the present framework maximizes
∏

i=1,2

∏
ti∈Ti(E[xi|ti])p(ti) over the set

of feasible contingent contracts x.

By contrast, Myerson (1984)’s bargaining solution is not derived from the max-

imization of a social welfare function over interim utilities, but instead defined con-

structively. While originally defined more generally to accommodate incentive con-

straints, it boils down to the following in our setting: an allocation rule x is a Myerson

solution for the bargaining problem B if there is λ̂ ∈ ∆++(T1)×∆++(T2) such that

E[xi|ti] =
∑

t−i∈T−i

p(t−i|ti) p(ti)

2λ̂i(ti)
max
v∈U(t)

∑
j=1,2

λ̂j(tj)

p(tj)
vj, (1)

for all ti ∈ Ti and i = 1, 2. A Myerson solution is always interim efficient. The set of

Myerson solutions for B is denoted MY (B). As the reader may check, if the ex-post

Nash solution of a smooth bargaining problem happens to be interim efficient, then

it is also a Myerson solution.

That a Myerson solution exists in our framework is an additional implication of

our convergence results; but typically, few contracts meet the requirements.6 Take an

6For our laptop-maker and chip-supplier example there is a unique Myerson solution, but in
general this need not be true.
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interim-efficient contract x with a strictly positive interim-orthogonal vector λ̂. From

Lemma 1, for each t ∈ T , the ex-post orthogonal vector to x(t) is λ(t) = ( λ̂1(t1)
p(t1)

, λ̂2(t2)
p(t2)

).

The following three-step process identifies whether x is a Myerson solution:

Step 1. For each t ∈ T , construct from U(t) a ‘linearized’ ex-post utility possibility set

Vλ(t) := {w ∈ R2
+ : λ(t) · w ≤ λ(t) · x(t) = maxv∈U(t) λ(t) · v}, which permits

transfers using the weights defined in λ(t).

Step 2. Find the Nash solution for Vλ(t) by picking the midpoint m(t) of the efficient

frontier, that is, mi(t) = p(ti)
2λi(ti)

maxv∈U(t) λ(t) · v, for i = 1, 2.

Step 3. Finally, x is a Myerson solution if it gives both bargainers the exact same

interim utilities as the contingent contract m.
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Figure 1: Procedure for finding Myerson solution in the introductory example.

Figure 1 illustrates this procedure for our example from the Introduction of the

laptop manufacturer (Agent 1) and microchip supplier (Agent 2). Let the old and

new types of Agent i be Oi and Ni, respectively. We can verify M is a Myerson

solution because it delivers the same interim utilities as m. For instance, type O1’s

gain of M1(O1, O1)−m1(O1, O1) = $0.75M relative to the midpoint in state (O1, O1)

is exactly offset by his loss of M1(O1, N1) −m1(O1, N1) = −$0.75M relative to the

midpoint in state (O1, N1).

Myerson derived this solution using three main axioms: probability invariance

(a generalization of invariance to rescaling utilities), a suitably adapted version of
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A C
A 0 δx
C δy x+y

2

Table 1: Prevailing Contingent Contract as a Function of Bargaining Stand
(x is 1’s offer; y is 2’s offer; A=Aggressive; C=Conciliatory; 1 picks row)

independence over irrelevant alternatives, and a random dictatorship axiom. The

last is an adaptation of Nash’s symmetry axiom, but merits further explanation.

Suppose there is a ‘strong’ solution, as in Myerson (1983), to the modified bargaining

problem where the first agent has all the bargaining power and can make a take-it-

or-leave-it offer to his opponent, and also a strong solution when the second agent

has all the bargaining power. If taking a 50/50 mixture of these two solutions gives

an interim-efficient contract, then the random dictatorship axiom states this mixture

contract is a solution to the original problem with bargaining power on both sides.

2.3 Non-Cooperative Bargaining Protocol

We summarize our two-stage bargaining protocol, discussed in the Introduction, as

follows. First, each agent i = 1, 2 simultaneously sends the other agent a proposed

contract (an element of U). Agents choose a bargaining posture after observing

the offers. If both take a conciliatory stand, then each contract is equally likely

to be implemented. A risk of disagreement arises, however, if someone takes an

aggressive stand. If one bargainer intransigently insists on his terms and the other is

conciliatory, then the insistent agent’s offer is implemented but payoffs are discounted

by δ ∈ [0, 1).7 The disagreement point prevails if both take an aggressive stand. Table

1 summarizes this information.

Our solution concept is (weak) Perfect Bayesian Equilibrium (PBE). An agent’s

strategy specifies which offer/demand to make, and which bargaining posture to adopt

for each conceivable pair of offers. Throughout the paper we use the letter x (resp., y)

to denote contingent contracts proposed by Agent 1 (resp., 2). An agent’s belief sys-

tem specifies a probability distribution over his opponent’s types for each conceivable

pair of offers. A PBE then consists of a strategy and belief system for each agent,

such that each agent’s strategy maximizes his expected payoff at each information set

given his belief and opponent’s strategy, with beliefs given by Bayes’ rule whenever

7Equivalently, players agree on the insistent demand with probability δ and otherwise disagree.
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possible. To clarify, we impose no restrictions on the beliefs of different types of an

agent following an opponent’s off-equilibrium path offer. We discuss the implications

of requiring consistent beliefs in subsection 4.3.

As hinted in the Introduction, our bargaining protocol admits many interpreta-

tions beyond the above scenario. For increased generality, consider the variant where

payoffs are discounted by a factor δ′ with δ′ ∈ (δ, 1] should both bargainers take a

conciliatory stand. Introducing δ′ does not change the strategic features of our bar-

gaining game. Indeed, the original payoff structure can be recovered by dividing all

payoffs by δ′, which simply amounts to rescaling the discount factor in case a single

bargainer takes an aggressive stand.

Consider the bargaining protocol introduced and analyzed by Evans (2003) under

complete information. Agents formulate demands/offers as before, but each offer goes

astray with probability ε > 0. Instead of facing a positive risk of disagreement by

insisting on one’s demands, agents must decide whether to accept their counterpart’s

offer without knowing whether their own offer went through. Of course, it would

be strategically equivalent for players to decide after the demand/offer stage which

offers to accept, before knowing whether they’ll receive one. Under this interpretation,

participants get (i) (1− ε2) times the average of the two contracts, if both accept, (ii)

(1 − ε) times the contract suggested by the rejecting party if the other accepts, and

(iii) 0 if both reject. This matches the payoffs for δ = 1− ε and δ′ = 1− ε2.

Alternatively, frictions may take the form of delays. Bargainers make acceptance

decisions privately and independently at time 0, but these decisions are recorded with

a random delay. The first contract accepted is implemented. With exponential dis-

counting, the problem has the payoff structure above with δ′ =
∫ ∫

e−rmin{t1,t2}dF (t1)dF (t2)

and δ =
∫
e−rtidF (ti), where F is an atomless CDF on R+ determining the time an

agent’s decision is recorded. Finally, concessions are modeled as an infinite-horizon

war of attrition in Section 5.1.

3 Conciliatory Equilibria

Our first main result provides a full characterization of conciliatory equilibria, whereby

agents formulate deterministic demands, and take conciliatory stands on path.8 The

8When there is a single state of the world, the refinement to pure strategies alone leads to a unique
equilibrium, in which postures are conciliatory. With private information, equilibria can exist where
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characterization proceeds in two steps. First, we show that for any conciliatory equi-

librium, there is a pooling conciliatory equilibrium that generates the same outcome.

This is reminiscent of Myerson (1983)’s inscrutability principle for the informed prin-

cipal problem. Second, we fully characterize pooling conciliatory equilibria.

3.1 Inscrutability Principle

Consider a conciliatory equilibrium. It may be separating, in that some types of

Agent i propose distinct contracts. The other agent may then infer something about

i’s type from the offer, influencing his bargaining posture. This is indeed a central

feature of bargaining under incomplete information: offers can signal types, thereby

impacting which agreements crystallize.

The next result shows, however, that there is no loss of generality in restricting

attention to pooling strategies when it comes to conciliatory equilibria. An agent

follows a pooling strategy if he proposes the same contingent contract independently

of his type. This does not mean the intuition in the paragraph above is incorrect, but

rather that the signaling which shapes agreements under incomplete information can

be incorporated in new contracts that are part of a pooling conciliatory equilibrium

with the same outcome.

To illustrate, suppose Agent 1 can be of two types, t1 or t′1, and there is a con-

ciliatory equilibrium where he proposes the contingent contract x when his type is t1

and x′ when his type is t′1. Consider the contingent contract that coincides with x

when his type is t1 and with x′ when his type is t′1. It turns out that proposing this

alternative contract, independently of his type, is part of another conciliatory equi-

librium that generates the exact same outcome. The next proposition proves this,

and extends the idea to show that any conciliatory equilibrium can be replicated by

a pooling conciliatory equilibrium.

Proposition 1. For any conciliatory equilibrium, there is a pooling conciliatory equi-

librium that yields the same outcome in all states.

agents adopt pure strategies on the equilibrium path, but some types posture aggressively. Mixed
strategy equilibria exist even when there is a single state.
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3.2 Characterization

By Proposition 1, we restrict attention to a pooling conciliatory equilibrium (x, y).

Since taking an aggressive stand has an intrinsic cost (δ < 1), Agent 1 may prefer

to be conciliatory when offered a contract ŷ 6= y slightly less appealing than x. This

decision typically depends on his beliefs regarding Agent 2’s type (updated given ŷ),

and the likelihood Agent 2 insists on ŷ following x (an off-path information set, as it

follows ŷ). Still, being conciliatory would be the best response, independently of 1’s

belief and 2’s bargaining stand, if

x1(t) + ŷ1(t)

2
> δx1(t) and ŷ1(t) > 0.

The first (resp., second) inequality guarantees Agent 1’s willingness to be conciliatory

when Agent 2 is conciliatory (resp., aggressive). Of course, in that case, being concilia-

tory is the best course of action whatever the mixed-strategy Agent 2 uses at the con-

cession stage. The two inequalities can be rewritten as ŷ1(t) > max{γx1(t), 0}, with

γ := 2δ − 1 ∈ [−1, 1). (2)

It is ‘safe’ for Agent 2 to propose such a contract ŷ, as Agent 1 will surely be concil-

iatory. Define Agent 2’s best-safe payoff given x at the type profile t by:

y
bs|x
2 (t) = sup{u2 | u ∈ U, u1 > max{γx1(t), 0}} = max{u2 | u ∈ U, u1 ≥ γx1(t)}.

Since Agent 2 can always deviate to a contract that gives him a payoff arbitrarily

close to this best-safe payoff, we conclude that

E[y2|t1] ≥ E[y
bs|x
2 |t1], for all t2 ∈ T2

Similarly, it must be that E[x1|t1] ≥ E[x
bs|y
1 |t1], for all t1 ∈ T1, where

x
bs|y
1 (t) = arg max{u1 | u ∈ U(t), u2 ≥ γy2(t)},

for each t ∈ T , is Agent 1’s best-safe payoff at t given y.9

9Myerson (1983) introduced the notion of best-safe mechanism for an informed principal. In
a more restrictive framework, Maskin and Tirole (1992) uses the notion of best-safe mechanism –
called a Rothschild-Stiglitz-Wilson allocation in their paper – to characterize the equilibrium set of
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Additionally, an agent’s offer cannot be too favorable to himself in a conciliatory

equilibrium. Since he anticipates that Agent 1 will be conciliatory given y, Agent 2’s

expected payoff is δE[y2|t2] if he takes an aggressive posture, and E[(x2 + y2)/2|t2] if

he is conciliatory. For Agent 2 to be conciliatory whatever his type, we must have

E[x2|t2] ≥ γE[y2|t2], for all t2 ∈ T2.

Similarly, for Agent 1 to be conciliatory whatever his type, we must have

E[y1|t1] ≥ γE[x1|t1], for all t1 ∈ T1.

The next proposition shows that the above inequalities, which are necessary for

(x, y) to be part of a pooling conciliatory equilibrium, are also sufficient. For nota-

tional simplicity, we define x
bs|y
2 = γy2(t) and y

bs|x
1 = γx1(t).10

Proposition 2. Let x, y be contingent contracts in U . There is a pooling conciliatory

equilibrium where all types of Agent 1 propose x, and all types of Agent 2 propose y,

if and only if:

E[xi|ti] ≥ E[x
bs|y
i |ti] and E[yi|ti] ≥ E[y

bs|x
i |ti] (3)

for all ti ∈ Ti and all i = 1, 2.

Existence of pooling conciliatory equilibria follows as a corollary. For each y ∈ U ,

let x̂bs|y ∈ U be the unique ex-post efficient contract such that x̂
bs|y
1 = x

bs|y
1 . We can

define ŷbs|x analogously, for each x ∈ U . It is easy to check that the map associating

(x̂bs|y, ŷbs|x) to each (x, y) is continuous, and so there is a fixed point (x, y) that satisfies

x(t) = x̂bs|y(t) ≥ xbs|y(t) and y(t) = ŷbs|x(t) ≥ ybs|x(t). We have thus found a pooling

conciliatory equilibrium. Indeed, (x(t), y(t)) is an ex-post equilibrium for each t:

an equilibrium of our bargaining protocol applied to U(t), while assuming that t is

common knowledge. This shows equilibrium existence is not an issue; rather, there

is typically a large set of equilibrium outcomes.

the informed-principal noncooperative game. The principal’s best-safe payoffs are directly expressed
in terms of the problem’s exogenous variables. By contrast, in the present paper, each agent’s
best-safe payoff varies with the other agent’s equilibrium offer. This is a substantial difference
both conceptually and computationally. In particular, the equilibrium set characterization will now
involve a fixed-point condition, see below.

10 Notice that xbs|y(t) and ybs|x(t) need not belong to U(t). Indeed, γ can be negative and, more
generally, U(t) need not be comprehensive over R2

+ either.
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4 Vanishing Bargaining Frictions

We are interested in understanding what happens to conciliatory-equilibrium out-

comes as the bargaining friction vanishes: that is, when δ, and thus γ = 2δ− 1, tend

to one. Let C(B) be the set of all such outcomes, that is, those contingent contracts

c for which one can find a sequence δn → 1 and a sequence of contingent contracts

cn → c such that cn is a conciliatory-equilibrium outcome of the non-cooperative

bargaining game associated to δn.

For a start, observe that C(B) is nonempty, because it contains the ex-post Nash

contingent contract. As pointed out after Proposition 2, for each t and each n, there

is a pooling conciliatory equilibrium with demands xn(t), yn(t) ∈ U(t) such that

xn(t) = x̂bs|y
n
(t) and yn(t) = ŷbs|x

n
(t). A standard argument, as in Binmore et al.

(1986), implies that the associated limit outcome c = lim xn+yn

2
corresponds to the

ex-post Nash solution.

Efficiency is a property to be desired in bargaining, at least whenever it is achiev-

able. Let C∗(B) be the set of contingent contracts in C(B) that are also interim

efficient. In this section, we first establish that efficiency is indeed achievable: C∗(B)

is always nonempty. Next, quite remarkably, we will show that under mild assump-

tions on B, all elements of C∗(B) are Myerson solutions. Finally, we show that

interim-efficiency must occur at the limit when conciliatory equilibria are sequential.

4.1 Interim Efficiency is Achievable

The first result here establishes that interim-efficient limits always exist.

Proposition 3. C∗(B) is nonempty.

To show this, we first apply a fixed-point theorem and Proposition 2 to establish

that for any δ < 1, there exists a pooling conciliatory equilibrium with each player

proposing an interim-efficient contract; see Proposition 7 in the Appendix. By com-

pactness, there are convergent sequences δn → 1, xn → x and yn → y such that the

offers (xn, yn) are both interim efficient and comprise a pooling conciliatory equilib-

rium. To conclude the proof of Proposition 3, we show that the outcome (x+ y)/2 is

interim efficient.

Though perhaps intuitive, the result is not straightforward. First, interim effi-

ciency is usually not preserved when averaging. We prove, however, that the se-
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quences (xn)n≥1 and (yn)n≥1 must converge to each other in the space of interim

utilities. Second, proving that the limit of interim-efficient contingent contracts is

itself interim efficient requires some effort. It is natural to proceed by contraposition.

If some contingent contract gives strictly higher interim utility to all types of both

agents, then clearly this contract will also be interim superior to some contracts in

the sequence before the limit. The issue is that interim inefficiency of the limit only

guarantees the existence of some contingent contract giving at least as much interim

utility to all types of all agents, and strictly more to at least one type of one agent.

Weak inequality need not be preserved before the limit, and a subtler argument is

needed to derive that a contract along the sequence is itself interim inefficient.

4.2 Convergence to Myerson

We next show that for smooth bargaining problems, any ex-post strictly individually

rational outcome in C∗(B) is a Myerson solution. This is a remarkably strong result.

It rules out equilibria which always converge to other interim-efficient bargaining so-

lutions, such as Harsanyi-Selten’s. We also provide a rather mild boundary condition

on B which guarantees that all elements of C∗(B) are ex-post strictly individually

rational. A contingent contract c is ex-post strictly individually rational if ci(t) > 0

for all t and each agent i.

In general, we may describe i’s maximal utility in state t given j’s payoff vj through

the function fi(t, .) : [0, uj(t)]→ R defined by:

fi(t, vj) = max{ui : (ui, vj) ∈ U(t)}.

Since U(t) is convex, fi(t, vj) is strictly decreasing on the interval [uj(t), uj(t)]. The

notion of a smooth bargaining problem, introduced at the end of Section 2.1, is

equivalent to requiring that fi(t, .) is continuously differentiable on (0, uj(t)), for all t

and i = 1, 2 with j 6= i. For such problems, let f ′i(t, .) be the continuous extension of

this derivative over [0, uj(t)]. Part of the result below shows that elements of C∗(B)

must be ex-post strictly individually rational when the right derivative at zero is not

‘too negative’, or more precisely,

f ′i(t, 0) > − p(t)ui(t)∑
t′∈T (tj)\{t} p(t

′)uj(t′)
, (BC)
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for all i = 1, 2, j 6= i, and t ∈ T . This boundary condition (hence ‘BC’) means

that, in each state, starting from a utility pair where j gets nothing, j’s payoff can be

increased without decreasing i’s utility by much. Observe that (BC) is automatically

satisfied whenever ui(t) > 0 for all i and t ∈ T . The rationale for the specific bound

on the RHS, which is thus relevant only when ui(t) = 0 (and thus f ′i(t, 0) ≤ 0) for

some i and t, will become clear shortly.

Proposition 4 (Convergence to Myerson). Let B be a smooth bargaining problem,

and let c be a contingent contract in C∗(B). We have:

(a) If c is ex-post strictly individually rational, then it is a Myerson solution.

(b) If B satisfies (BC), then c is ex-post strictly individually rational.

Hence, C∗(B) ⊆MY (B) for all smooth B satisfying (BC).

We prove the first part of the proposition by deriving an appropriate approxima-

tion of each agent’s best-safe payoff. To simplify the sketch of proof, suppose each

xn is an ex-post strictly individually rational and ex-post efficient demand. Then

smoothness ensures a unique and strictly positive unit vector λn(t) orthogonal to

U(t) at xn(t). As depicted in Figure 2, we can thus approximate Agent 2’s best-

safe payoff through his best-safe payoff from the linearized utility-possibility frontier

Vλn(t). This approximation,

ỹ
bs|xn
2 (t) = xn2 (t)− λn1 (t)

λn2 (t)
γnxn1 (t),

is at most O((1−γn)2) from y
bs|xn
2 (t) by a second-order Taylor expansion. Combining

this with our equilibrium conditions from Proposition 2 allows us to show that in the

limit, Agent 2’s expected payoff must be at least half of the linearized surplus in Vλx :

that is, E[c2|t2] ≥ 1
2
E[λ

x·x
λx2
|t2], where λn → λx. Similarly Agent 1 must get at least

half of the linearized surplus in Vλy in expectation. Since c is interim efficient, it must

also be ex-post efficient, and so λx = λy (and λx ·x = λx · c = λx · y). The assumption

that c is strictly ex-post individually rational ensures that λx is the unique ex-post

orthogonal vector to U(t) at c(t). By Lemma 1, therefore, there is some λ̂ ∈ RT1
+ ×RT2

+

which is interim orthogonal to U(B) at x such that λxi (t) = λ̂i(ti)
p(ti)

for i = 1, 2. This is

enough to show that each agent gets exactly half of the linearized surplus, making it

a Myerson solution.
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U(t)
Vλn(t)
λn(t)
xn

ybs|x
n

(t)

u2

u1xn1 (t)

y
bs|xn
2 (t)

γnxn1 (t)

ỹ
bs|xn
2 (t)

Figure 2: Approximation of Agent 2’s best safe yb2s|xn(t) by ỹ
bs|xn
2 (t)

We can now also explain how we prove part (b), which will also provide some

intuition for (BC). Consider a feasible utility set with u2(t) = 0, which is the only

case where condition (BC) is possibly binding, and suppose c2(t) = (u1(t), 0) so that

xn2 (t)→ 0. The reasoning from the previous paragraph remains valid, in that Agent

2’s expected payoff given t2 must be at least half of the expected linearized surplus

E[c2|t2] ≥ 1
2
E[λ

x·c
λx2
|t2]. This inequality is hard to satisfy if λx2(t)/λx1(t) is very small, as

then λx(t) · c(t)/λx2(t) is very large (infinity if λx2(t)/λx1(t) = 0). We don’t know much

about λx(t′) for t′ ∈ T (t2)\{t} but it is certainly true that c2(t′) ≤ λx(t′) ·c(t′)/λx2(t′).

Using this fact and c2(t′) ≤ u2(t′), we see that it is infeasible for c(t) = (u1(t), 0) and

E[c2|t2] ≥ 1
2
E[λ

x·c
λx2
|t2] if ever 1

2

∑
t′∈T (t2)\{t} p(t

′|t2)u2(t′) < 1
2
p(t|t2)λ

x(t)·c(t)
λx2 (t)

. But this

condition exactly corresponds to (BC) for i = 1 after noticing that the ratio on the

RHS is equal to −u1(t)/2f ′1(0, t).

It should be emphasized that while smoothness and (BC) are sufficient to ensure

the existence of a Myerson limit, they are far from necessary. However, there exist

simple counter-examples to the result when relaxing any one of these assumptions.11

Intuitively, when there is convergence to an interim-efficient limit outcome that is

ex-post strictly individually rational and at a smooth point of the feasible utility

set, the possibility of local deviations imposes considerable discipline on the relation

between agents’ demands in different states. This discipline (captured by the unique

relationship between the interim and ex-post orthogonal vectors) is what ensures

those limits must be a Myerson solution, and is lacking at a kink or boundary point.

11Available from the authors on request.
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4.3 Sequential Equilibria

Under the notion of PBE studied thus far, beliefs following a demand/offer which is

off-the-equilibrium path are left unrestricted. When more structure is desired, Kreps

and Wilson (1982)’s sequential equilibrium comes to mind. However, the concept is

defined for finite games, and generalizations to infinite games remain an active field

of research (e.g., Myerson and Reny (2019)). In Section 4.3.1, we explain how the

notion of sequential equilibrium naturally extends to our infinite bargaining game.

We prove in Section 4.3.2 that, under rather mild regularity conditions, the limit

of conciliatory sequential-equilibrium outcomes must be interim efficient, and hence

Myerson solutions by Proposition 4. We cannot rely on general results to guarantee

existence of sequential equilibria in our infinite game (identifying sequential equilibria

is typically challenging even in finite games). Even so, we prove existence for a large

class of problems where bargainers have two types each (see Section 4.3.3). Proving

existence more generally remains an open question.12

4.3.1 Definition

Under the notion of sequential equilibrium, which is defined for finite games, be-

liefs should be justified at all information sets as limits of Bayesian-updated beliefs

along some sequence of totally-mixed strategies which approximate the equilibrium

strategies. Of course, it is impossible for a single strategy to mix between each of a

continuum of offers with positive probability. To deal with this issue, consider any

finite subset Û of U , and define the Û -discretization of our game as its variant where

demands/offers are restricted to Û . The discretization is meaningful given a concilia-

tory equilibrium if Û contains equilibrium demands/offers. Fix now a belief system,

which specifies i’s belief about j’s type after each demand/offer j may make in the

original game. One can naturally restrict the equilibrium strategies and belief system

to any meaningful discretization, simply by ignoring agents’ bargaining stands and

beliefs after infeasible demands/offers. With a slight abuse of terminology, we will

not repeat this obvious step, and instead use the conciliatory equilibrium and the

belief system of the original game as if they were defined in the discretizations.

12If sequential equilibria fail to exist in some cases (we haven’t encountered an example yet), then
the notion of PBE seems most appropriate as a fallback. Some may also simply generally prefer the
notion of PBE over that of sequential equilibrium. In all these cases, our previous results apply and
offer strong non-cooperative support for the Myerson solution.
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Definition 1. A conciliatory equilibrium, specifying strategies and a belief system,

is a sequential equilibrium if it forms a sequential equilibrium in all meaningful dis-

cretizations.

To provide further intuition regarding the restrictions imposed by sequential equi-

librium, we suggest an equivalent definition based on Fudenberg and Tirole (1991)’s

‘no-signaling-what-you-don’t-know’ principle (which was developed, once again, for

finite games). Their idea is that while an opponent’s unexpected demand/offer may

reveal information to an agent about that opponent’s type (no restriction is made

in that regard), the agent’s own demand/offer and own type provide no additional

information.”

If players’ types are independent, the above idea is easy to formalize: i can hold

any belief about j’s type after j makes an unexpected demand/offer, but this belief

cannot vary with i’s type, or i’s demand. In fact, however, the assumption of inde-

pendent types is without loss of generality: any Bayesian game with state-dependent

utility is strategically equivalent to a Bayesian game with independent types (My-

erson, 1985). For instance, we could redefine bargaining problems to get a uniform

prior by transforming each contract x into x̃i(t) = |T−i|p(t−i|ti)xi(t). Conciliatory

PBEs and sequential equilibria of the resulting non-cooperative game are derived by

applying the same transformation to equilibria of the original game.13

Definition 2. If necessary, first reformulate the game so that types are indepen-

dent. Assuming that types are independent, a belief system respects the no-signaling-

what-you-don’t-know principle if Agent i’s belief about j’s type after j made any

off-equilibrium-path demand/offer does not vary with i’s type, or i’s demand/offer.

Beliefs in sequential equilibria clearly satisfy this principle, since Bayesian updated

beliefs associated to approximating strategies for the deviating agent can reveal in-

formation only about his type. Fudenberg and Tirole (1991) observe that, for finite

two-stage games, imposing the no-signaling-what-you-don’t-know principle is equiv-

alent to restricting attention to sequential equilibria. Their result clearly extends to

infinite games under the above definitions; the easy proof is left to the reader.

Observation 1. A conciliatory PBE is a sequential equilibrium if, and only if, the

belief system satisfies the no-signaling-what-you-don’t-know principle.
13The result for sequential equilibria was proved in Fudenberg and Tirole (1991, Proposition 5.1).

Of course, they restricted attention to finite games, but their result carries over at once to infinite
games under Definition 1.

20



4.3.2 Interim Efficiency at the Limit of Sequential Equilibria

We start by providing some intuition for our result (that limits must be efficient).

For this, consider two-type bargaining problems (T1 = {t′1, t′′1}, T2 = {t′2, t′′2}) with a

uniform prior p over types. We begin by focusing on a particular, seemingly robust

type of conciliatory equilibrium: the ex-post PBE. With δ close to 1, ex-post equi-

librium demands (x, y) are close to the limit ex-post Nash solution (epN for short),

and satisfy x = xbs|y, y = ybs|x. We now explain why the ex-post PBE cannot be

sequential if there is a contingent contract e∗ ∈ U that is strictly interim superior to

epN .

We can assume, without loss of generality, that Agent 1 strictly prefers e∗ over epN

when types match, while Agent 2 strictly prefers e∗ over epN when types mismatch:

E[t) > epN1(t) for t = (t′1, t
′
2) or (t′′1, t

′′
2), and E[t) > epN2(t) for t = (t′1, t

′′
2) or

(t′′1, t
′
2).14 Now, if both of Agent 1’s types were conciliatory at the information set

(x, e∗), then Agent 2 could profitably deviate by proposing the interim superior e∗

instead of y (getting E[
x2+e∗2

2
|t2] > E[x2+y2

2
|t2] by being conciliatory himself). Instead,

suppose only one of Agent 1’s types, say t′1, is conciliatory at (x, e∗), while type t′′1

insists on x. We know that Agent 2 strictly prefers e∗ over epN in state (t′1, t
′′
2). By

being conciliatory, type t′′2 profits by proposing e∗ instead of y. Indeed, the deviation’s

expected payoff is

1

2

x2(t′1, t
′′
2) + e∗2(t′1, t

′′
2)

2
+
δ

2
x2(t′′1, t

′′
2) ≥ δE[x2|t2] +

e∗2(t′1, t
′′
2)− x2(t′1, t

′′
2)

4
,

which is strictly greater than the equilibrium payoff E[x2+y2
2
|t2], as δ is close to 1 and

both x and y are close to each other, and close to epN .

The arguments above imply that both of Agent 1’s types must react aggressively

at (x, e∗) to deter 2’s deviation. Notice that, if type t′1 is conciliatory given some

belief after e∗, then he will also be conciliatory for any larger probability of t′2 (e∗

gives him more than epN1 ≈ γx1 in state (t′1, t
′
2)). Also, if type t′1 maintained his

prior belief (that he faces type t′2 with probability half), then he would certainly be

14This follows at once after proving that each type-agent prefers e∗ over epN for one type of the
opponent, and vice versa for the opponent’s other type. To see this, suppose 1 of type t′1 strictly
prefers e∗ over epN whatever is opponent’s type. Since epN is ex-post efficient, Agent 2 strictly
prefers epN over e∗ in those states. Since e∗ is interim strictly superior to epN , Agent 2 must strictly
prefer e∗ over epN in both (t′′1 , t

′
2) and (t′′1 , t

′
2). But then e∗ is interim strictly inferior to epN for

Agent 1 of type t′′1 , a contradiction.
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conciliatory, because e∗ delivers a higher expected payoff than epN . Thus, to trigger

an aggressive stand, Agent 1 of type t′1 must believe that t′′2 is strictly more likely than

t′2 at the information set (x, e∗). Similarly for Agent 1 of type t′′1 to be aggressive, he

must believe that t′2 is strictly more likely than t′′2 at (x, e∗). Thus these two types

must hold different beliefs to deter 2’s deviation to e∗. This is not permitted in a

sequential equilibrium.

We see that the ex-post PBE cannot be supported by a sequential equilibrium for

δ close to 1 when the ex-post Nash solution is interim inefficient. The logic applies

more generally, to all sequences of conciliatory equilibria (pooling and separating)

with inefficient limits, independently of the prior when each agent has two types.

With more than two types our argument extends assuming an additional regularity

condition. The condition strengthens (BC) slightly, requiring that at the margin, j’s

utility can be increased in any state t without decreasing i’s utility:

f ′i(t, 0) ≥ 0. (SBC)

This inequality holds (even strictly) whenever ui(t) > 0. If ui(t) = 0, then the

inequality requires the orthogonal vector to U(t) at (0, uj(t)) to place a zero weight

on i. In other words, the Pareto frontier of U(t) must be flat (if i = 2) or vertical

(if i = 1) at the margin. This would be guaranteed, for instance, if utility possibility

sets arise from utility functions satisfying Inada’s conditions.

Remember that C(B) denotes contingent contracts that can be approximated by

a sequence of conciliatory-equilibrium outcomes as δ tends to 1, while C∗(B) is the

subset of contracts in C(B) that are interim efficient. We let Cs(B) be the subset

of C(B) for which equilibria along the sequence are sequential. We next establish

Cs(B) ⊆ C∗(B) under mild conditions.

Proposition 5. Let B be a bargaining problem that either has |Ti| = 2 for i = 1, 2,

or is smooth and satisfies (SBC).15 Then Cs(B) ⊆ C∗(B).

15The result also holds if one agent has no private information (|Ti| = 1 for some i). Ex-post
efficiency and interim efficiency are equivalent in that case, and Lemma 6 shows C(B) contains only
ex-post efficient contracts. So C(B) ⊆ C∗(B), and a fortiori Cs(B) ⊆ C∗(B).
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4.3.3 Existence

Proving general existence results for adaptations of sequential equilibrium to infinite

games is notoriously hard. We now establish that assumptions underlying our con-

vergence result in Proposition 4 are also essentially sufficient for the nonemptiness

of Cs(B) when agents have two types each. The only additional assumption is that

fi(t, ·) is twice-differentiable at u−i(t), and f ′′i (t, u−i(t)) < 0, for all i and t ∈ T .

It is thus required that the utility possibility set is strictly convex at utility pairs

where one agent gets his best possible payoff. Finding sufficient conditions for the

non-emptiness of Cs(B) with larger type spaces remains an open question (we have

not found a counter-example).

Proposition 6. Suppose that B is smooth, (BC) holds, f ′′i (t, u−i(t)) < 0, and |Ti| = 2,

for all i = 1, 2 and t ∈ T . Then Cs(B) 6= ∅.16

We now briefly sketch the main ideas in the proof, which appears in the Online

Appendix. Suppose first that utility is transferable and types are independent: risk

neutral bargainers divide M(t) dollars in each state t. The set of conciliatory equi-

libria is easy to describe in this case. Namely, each bargainer demands a fraction 1
1+γ

of the expected money available (e.g., E[x1|t1] = E[M |t1]
1+γ

), while offering his opponent

an expected share of γ
1+γ

(e.g., E[x2|t2] = γE[M |t2]
1+γ

). We show that each conciliatory

equilibrium outcome can be supported by a sequential equilibrium in this case. Sup-

pose Agent 1 unilaterally deviates by demanding x̂ instead of the equilibrium x. One

must define a belief for Agent 2 that is independent of t2 and an equilibrium in the

bargaining-posture stage that makes both types of Agent 1 no better-off compared

to his equilibrium payoff. Getting both types of Agent 2 to take an aggressive stand

against x̂ and both types of Agent 1 to take a conciliatory stand would do it, but

there won’t be beliefs supporting this when x̂ is generous to Agent 2 (compared to

δy). When no such beliefs exist, Agent 2 will take a conciliatory stand for some

type, but there is a sense in which Agent 1 is too generous towards Agent 2 in such

deviations, and one can find some equilibrium of the continuation game that leaves

Agent 1 no better off. The argument here relies on Farkas’ lemma.

For general bargaining problems, we introduce the idea of a joint principal-agent

equilibrium. Essentially, it is a pair (x, y) of contingent contracts such x (resp., y) is

16In fact, we prove a slightly stronger result: there exists a threshold δ < 1 such that conciliatory
sequential equilibria exist for all δ ∈ [δ, 1].
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the analogue of Myerson (1983)’s principal-agent solution when Agent 2’s (resp., 1’s)

outside option is γy (resp., γx). The reasoning from the paragraph above extends

to any joint principal-agent equilibrium. The last step is to show the existence of a

joint principal-agent equilibrium, for which we use the facts that B is smooth, satisfies

(BC) and has f ′′i (t, u−i(t)) < 0. As should be clear from above, these conditions are

not necessary for existence.

5 Extensions

This section considers various extensions to our original model. Primary among these

is the extension of our results to an infinite horizon war of attrition game. We also

extend to non-common priors and asymmetry in discounting. Details are provided in

the Online Appendix.

5.1 Concession as a War of Attrition

Our results extend to a dynamic bargaining game, where the concession stage is a

war of attrition. At period 0, agents independently propose contingent contracts,

as in the demand/offer stage of our static game. Subsequently, and as long as no

agent has conceded, an intermediary reaches out to one agent in each period s ∈
{1, 2, ...}, to inquire whether he’d like to concede. Future payoffs are discounted

using a common discount factor δ. Which of the two agents the intermediary contacts

first is determined by uniform randomization. The intermediary alternates thereafter

(contacting agent i in all odd periods and agent j in all even periods). In any given

period, there is an exogenous probability ε ∈ (0, 1) that the intermediary and the

designated agent do not get in touch (e.g., the agent is unavailable, the intermediary

gets sidetracked, or a technical issue arises).17

A stationary equilibrium is a perfect-Bayesian equilibrium where each type of each

agent decides whether to concede in period s solely based on the demands/offers and

his beliefs about his opponent in period s (but not explicitly on the time-period

s).18 Strategies induce initial concession if both agent 1 and 2 concede in period 1

17Hence, following any initial demands/offers, all future periods are on the equilibrium path,
which means that agent’s beliefs can be determined by Bayes’ rule from his beliefs after observing
an opponent’s initial demand and that opponent’s strategy.

18Strategies can still be time dependent, because beliefs may vary over time. Notice by the way
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conditional on being called by the intermediary.

In the Online Appendix, we show that the set of payoffs in stationary equilibria

with initial concession is equivalent to that of conciliatory equilibria in our simple

two-stage game, when γ = δ(1 − ε)/(1 − εδ2). And so, any interim efficient limits

of these equilibria (as δ → 1) are Myerson solutions, under our previous assumptions

about the bargaining problem.

5.2 Non-common priors

So far we have assumed that agents share a common prior. We now relax this as-

sumption, letting pi ∈ ∆(T1 × T2) denote Agent i’s prior. Disagreement about priors

give rise to the possibility of mutually-beneficial bets at the interim stage. Consider,

for instance, problems such as the introductory example where there is an amount

$m(t) to split in state t. To isolate the effect of non-common priors, suppose both

bargainers have the same utility function u : R+ → R that is smooth, strictly concave

and with an infinite marginal utility of money at zero. With these assumptions, the

ex-post bargaining problems satisfy all our assumptions, including the strong bound-

ary condition. Symmetry of preferences means the ex-post Nash solution–which will

split m(t) equally between both bargainers in all states–will be interim efficient, for

any common prior.19 By contrast, the ex-post Nash solution is interim inefficient for

all non-common prior environments.20

The point we want to emphasize is this: all our main results extend to situations

where bargainers derive their beliefs from different priors. Indeed, Agent i’s expected

utility from x under pi is identical to his expected utility, under a uniform prior

over the state space, from receiving x̃i(t) = |T−i|pi(t−i|ti)xi(t) in each state t. Thus,

the bargaining problem U under the priors (p1, p2) is strategically equivalent to the

bargaining problem Ũ under the uniform common prior, where Ũ(t) is the set of x̃(t)

that higher-order beliefs may vary and matter as well (e.g., beyond i’s belief about ti, i’s assessment
about what j believes regarding ti may also matter, etc.).

19The vector (1, 1) is orthogonal to U(t) at the Nash solution. For the prior p, take λi(ti) as the
marginal p(ti) and apply Lemma 1.

20Following Morris (1994), for all non-common prior (p1, p2), there exists φ : T → R2 such that
(a) φ1(t) + φ2(t) = 0 for all t, and (b) Ei[φi|ti] > 0 for all i, ti. Consider a small (infinitesimal)

monetary transfer $ φi(t)dm
u′(0.5m(t)) in each state t between the two agents (budget balanced, by (a)). The

marginal impact on i’s ex-post utility in state t is φ(t)dm. By (b), the new contingent contract gives
strictly larger interim utility to all types of both agents.
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for x ∈ U .21

5.3 Asymmetric Bargaining Power

Under complete information, asymmetric bargaining power can easily be accommo-

dated in the Nash solution, by maximizing a weighted Nash product uα1u
1−α
2 . The

parameter α ∈ [0, 1] captures 1’s relative bargaining power.

A natural way to introduce asymmetry in our non-cooperative bargaining game

is to change the outcome that prevails when both agents take a conciliatory stand,

say (1− α)x+ αy instead of the plain average of the offers x and y. Under complete

information, a standard argument shows that, for α ∈ (0, 1), the Nash equilibrium

outcome converges to the weighted Nash solution discussed above, as δ tends to 1.

Notice that players do less well when their own proposal is agreed to with greater

frequency. What are the limit equilibrium outcomes arising under incomplete infor-

mation?

Assume that the bargaining problem is smooth, and that the stronger boundary

condition (SBC) holds. Following the same reasoning as in the proof of Proposition

4, any limit equilibrium outcome c∗ must be an α-weighted Myerson solution:22 there

exists λ̂ ∈ ∆++(T1)×∆++(T2) such that

E[c∗i |ti] =
∑

t−i∈T−i

p(t−i|ti)
αi maxv∈V (t)

∑
j=1,2 λj(tj)vj

λi(ti)
,

where α1 = α, α2 = 1 − α, and λj(tj) = λ̂j(tj)/p(tj), for all tj and both j = 1, 2.

In terms of the three-step process proposed in Section 2.2 to describe the Myerson

solution, only the second step is modified: a share αi of the surplus in Vλ(t) is now

allocated to agent i.

Finally, remember that we considered some alternative bargaining protocols in

Section 2.3. For the one introduced and analyzed by Evans (2003) under complete

information, suppose now that there is a probability εi that i’s demand/offer goes

21In other words, equilibrium outcomes must satisfy the analogue in our framework of Myerson
(1984)’s probabilistic invariance axiom.

22The proof is available from the authors on request. The stronger boundary condition can be
relaxed. What matters is that the limit equilibrium outcome is strictly individually rational. In
Proposition 4, we showed that the weaker boundary condition (BC) guarantees this for α = 1/2.
That weaker condition can easily be adapted for any α ∈ (0, 1).
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astray. It is not difficult to check that, if both ε1 and ε2 vanish, then (under the

usual assumptions) the limit equilibrium outcome will be the α-weighted Myerson

solution where α = 1
1+lim

ε1
ε2

. Having one’s demand/offer go astray less often thus

corresponds to a higher weight in the limit. In the bargaining game where acceptance

is stochastically delayed, a natural asymmetry is differential discounting, so that agent

i’s discount rate is ri. It is again easy to check that as agents become patient, the

limit equilibrium outcome will be the α-weighted Myerson solution where α = 1
1+lim

r1
r2

.

Greater patience corresponds to a higher weight.

Proposition 5 (limits of sequential equilibria are efficient) goes through unchanged.23
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Appendix

A1 Preliminaries

We now state, and prove in the Online Appendix, some useful technical results. We

begin with the correspondence F : U ⇒ U that associates to any contingent contract

v ∈ U the set of contingent contracts u ∈ U that are weakly interim superior to v:

F (v) = {u ∈ U : E[ui|ti] ≥ E[vi|ti] for all ti ∈ Ti and i = 1, 2}.

Lemma 2. F is continuous with non-empty, compact, and convex values.
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The next lemma establishes that the set of interim efficient contingent contracts

is closed. This is true under complete information when there are two agents, but

not for three or more agents. With two agents under incomplete informations, there

are more than two type-agents and it is not clear a priori that interim efficiency is

preserved through limits.

Lemma 3. Consider a sequence of feasible contingent contracts xn → x ∈ U . If each

xn is interim efficient, then x is interim efficient.

Next, say that contract z interim strictly dominates x if E[zi|ti] > E[xi|ti] for all

i, ti, and x is weakly interim efficient if there is no such contract z.

Lemma 4. Suppose |Ti| = 2 for i = 1, 2. If x is both ex-post efficient and weakly

interim efficient, then it is also interim efficient.

Contract e∗ interim dominates x when restricted to T ′1 × T ′2 if E[e∗i |ti, T ′−i] ≥
E[xi|ti, T ′−i] for all i, ti ∈ T ′i , with strict inequality for some i, ti.

Lemma 5. Consider a smooth bargaining problem where each agent has at least two

types. Suppose x is an ex-post efficient contract with xi(t) > ui(t) for i = 1, 2 and

t ∈ T . If x is not interim efficient, then there are T ′i ⊂ Ti for i = 1, 2 with |T ′i | = 2

and a contract e∗ that interim dominates x when restricted to T ′1 × T ′2.

A2 Characterization of Conciliatory Equilibria

Proof of Proposition 1 (Inscrutability) Take a separating conciliatory equilib-

rium. It is associated with partitions of the type spaces T1 and T2:

T1 = T
(1)
1 ∪ · · · ∪ T (m)

1 , and T2 = T
(1)
2 ∪ · · · ∪ T (n)

2 .

All types t1 belonging to cell T
(j)
1 propose x(j), and all types t2 belonging to cell T

(j)
2

propose y(j). We may assume wlog that x(j) 6= x(k) and y(j) 6= y(k) when j 6= k. We

can thus define functions j : T1 → {1, . . . ,m} and k : T2 → {1, . . . , n}, where j(t1) is

the index of the cell in the partition of T1 to which t1 belongs (t1 ∈ T (j(t1))
1 ), and k(t2)

is the index of the cell in the partition of T2 to which t2 belongs (t2 ∈ T (k(t2))
1 ). Define

best-safe contracts, xbs|y
(j)

for each j ∈ {1, . . . , n} and ybs|x
(k)

for each k ∈ {1, . . . ,m}.
Consider a pooling strategy for Agent 1 where he offers x∗ independently of t1,

with x∗(t) = x(j(t1))(t) for t = (t1, t2), and a pooling strategy for Agent 2 where he

29



offers y∗ independently of t2, with y∗(t) = y(k(t2))(t) for t = (t1, t2). Followed by a

conciliatory posture from all types, these strategies yield the same outcome in all

states as the original separating conciliatory equilibrium. To conclude the proof we

show these new strategies are part of a conciliatory equilibrium, by verifying the

conditions of Proposition 2.

The desired condition E[x∗1|t1] ≥ E[x
bs|y∗
1 |t1] follows by observing that in the

original separating equilibrium, if Agent 1 (of any type) were to deviate and propose

xbs|y
∗

then all types of Agent 2 will take a conciliatory posture, for whatever beliefs

2 may have following this deviation. This follows by a similar computation as in

the proof of Proposition 2. In the original separating equilibrium, Agent 1 of a

type t1 ∈ T
(j)
1 instead proposes x(j), to which all types of Agent 2 respond with

a conciliatory posture. The rationality of Agent 1 sending x(j) thus requires that

E[x
(j)
1 |t1] ≥ E[x

bs|y∗
1 |t1]. By construction of x∗, when t1 ∈ T (j)

1 we have E[x
(j)
1 |t1] =

E[x∗1|t1], yielding the desired inequality. A symmetric argument for Agent 2 implies

the condition E[y∗2|t2] ≥ E[y
bs|x∗
2 |t2].

To conclude the proof, we show the condition E[x∗2|t2] ≥ E[x
bs|y∗
2 |t2] holds for all

t2; the condition that E[y∗1|t1] ≥ E[y
bs|x∗
1 |t1] for all t1 is derived analogously. Observe

that after receiving the proposal x(j) in the separating equilibrium, an Agent 2 of type

t2 ∈ T (k)
2 has Bayesian-updated beliefs given by p(t1|t2, T (j)

1 ). Agent 2 is conciliatory

following Agent 1’s proposal when he also has the option of posturing aggressively.

By a similar computation as for Proposition 2, we conclude that being conciliatory

requires

E[x
(j)
2 |t2, T

(j)
1 ] ≥ γE[y(k)2|t2, T (j)

1 ] = E[x
bs|y(k)
2 |t2, T (j)

1 ] (4)

for every type t2 ∈ T
(k)
2 , every k ∈ {1, . . . , n} and every j ∈ {1, . . . ,m}. Multiply

the inequality (4) associated with each j ∈ {1, . . . ,m} by the probability p(T
(j)
1 |t2)

and sum up the corresponding inequalities over all j. The resulting inequality is

equivalent to the desired one by the construction of x∗ and y∗. �

Proof of Proposition 2 (Characterization of Conciliatory Equilibria) Ne-

cessity was established in the text. For sufficiency, suppose the contingent contracts

x and y satisfy (3). We construct a conciliatory equilibrium in which all types of

Agent 1 propose x and all types of Agent 2 propose y. Following the offer x, Agent

2’s updated belief over Agent 1’s type coincides with his interim belief, and being

conciliatory is a best response since E[x2|t2] ≥ E[x
bs|y
2 |t2], for all t2 ∈ T2. Similar
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reasoning applies to Agent 1 following y.

We now define beliefs and strategies, and check incentives after a unilateral devia-

tion. Without loss, suppose Agent 1 proposes x′ instead, while 2 proposes y. For any

type t2, define Agent 2’s beliefs and action as follows. Let T1(t2, x
′, y) = {t1 ∈ T1 :

x′2(t1, t2) < γy2(t1, t2)}. If T1(t2, x
′, y) 6= ∅, let the probability type t2 believes that

he faces t1 given x′ be µ2(t1|t2, x′, y) = 1 for some t1 ∈ T1(t2, x
′, y), so Agent 2 takes

an aggressive stand against x′. If T1(t2, x
′, y) = ∅ then let µ2(t1|t2, x′, y) = 1 for some

arbitrary t1 ∈ T1, with Agent 2 conciliatory following x′. Agent 1’s belief following y

coincides with his interim belief, and he is conciliatory following 2’s proposal.

We now show that the off-equilibrium behavior following a unilateral deviation is

rational. If Agent 2 expects y to result in a conciliatory posture, then it is rational

for him to posture aggressively against 1’s deviation x′ given his off-equilibrium belief

when T1(t2, x, y) 6= ∅, and to be conciliatory otherwise. Moving on to Agent 1’s

strategy, posturing aggressively against y after proposing x′, when he is of type t1,

gives him an expected payoff of

δ
∑

t2∈T2(x′,y)

p(t2|t1)x′1(t1, t2),

where T2(x′, y) = {t2 : T1(t2, x
′, y) = ∅} is the set of Agent 2’s types who will be

conciliatory after x′. By being conciliatory, Agent 1 of type t1 gets:

∑
t2∈T2(x′,y)

p(t2|t1)
x′1(t1, t2) + y1(t1, t2)

2
+ δ

∑
t2∈T2\T2(x′,y)

p(t2|t1)y1(t1, t2).

Multiplying the payoffs by 2
γ

and rearranging, we see that being conciliatory is prefer-

able to being aggressive if and only if

∑
t2∈T2(x′,y)

p(t2|t1)x′1(t1, t2) ≤ 1

γ
E[y1|t1] +

∑
t2∈T2\T2(x′,y)

p(t2|t1)y1(t1, t2).

Since x′2(t) ≥ γy2(t) for t = (t1, t2) such that t2 ∈ T2(x′, y) then we must have

x′1(t) ≤ x
bs|y
1 (t). Imposing this inequality as an equality and rearranging, we get that

a conciliatory posture is certainly preferable if

E[x
bs|y
1 |t1] ≤ 1

γ
E[y1|t1] +

∑
t2∈T2\T2(x′,y)

p(t2|t1)(y1(t1, t2) + x
bs|y
1 (t1, t2)).
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By equation (3), we have E[y1|t1] ≥ E[y
bs|x
1 |t1] = γE[x1|t1] ≥ γE[x

bs|y
1 |t1]. Hence, a

conciliatory posture is preferable, since y(t) ≥ 0 and xbs|y(t) ≥ 0.

We now show that deviating from x to x′ is not profitable for Agent 1. Agent 1’s

expected payoff is equal to δy1(t) in any state t = (t1, t2) where Agent 2 refuses x′

(i.e. if t2 ∈ T2 \ T2(x′, y)), and is equal to
x′1(t)+y1(t)

2
for states where 2 is conciliatory.

Thus 1 has no strict incentive to deviate by proposing x′ instead of x if and only if

∑
t2∈T2(x′,y)

p(t2|t1)
x′1(t1, t2) + y1(t1, t2)

2
+δ

∑
t2∈T2\T2(x′,y)

p(t2|t1)y1(t1, t2) ≤ E[x1|t1] + E[y1|t1]

2

(5)

Multiplying both sides of the inequality by 2 and rearranging, we get:∑
t2∈T2(x′,y)

p(t2|t1)x′1(t1, t2) + γ
∑

t2∈T2\T2(x′,y)

p(t2|t1)y1(t1, t2) ≤ E[x1|t1]. (6)

Notice that x′1(t1, t2) ≤ x
bs|y
1 (t1, t2) when t2 ∈ T2(x′, y), by definition of T2(x′, y), and

that γy1(t) ≤ x
bs|y
1 (t), by definition of x

bs|y
1 . Thus the LHS of equation (6) is less or

equal to E[x
bs|y
1 |t1], which itself is less than the RHS of equation (6), thanks to our

equilibrium conditions from equation (3). Thus Agent 1 does not find it profitable to

unilaterally deviate to x′, as claimed.

It remains to ensure there exist mutually optimal continuation strategies given be-

liefs after mutual deviations to x′ and y′. We define beliefs to be consistent with those

after unilateral deviations, so µ2(t1|t2, x′, y′) = µ2(t1|t2, x′, y), and µ1(t2|t1, x′, y′) =

µ(t1|t2, x, y′). These beliefs and agents’ posturing strategies determine expected con-

tinuation payoffs. Let those continuation payoffs correspond to payoff functions in an

auxiliary posturing game with T1 ∪ T2 players. That finite game must have a Nash

equilibrium and so we let postures following deviations x′, y′ be defined by one of

those equilibria. �

A3 Non-Emptiness of C∗(B)

We start by establishing, for any δ (before the limit), the existence of pooling concil-

iatory equillibria with interim efficient demands.

Proposition 7. There exists some pooling conciliatory equilibrium with interim effi-

cient demands.
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Proof. Let U(t) = {u ∈ R2
+|(∃v ∈ U(t)) : u ≤ v}, and let φ̂ : U ⇒ U be the

correspondence defined by φ̂(v) = arg maxu∈F (v)

∏
ti, i

(E[ui|ti]− E[vi|ti] + 1) , where

F was defined right before Lemma 2. The set φ̂(v) is compact and convex, since

it is obtained by maximizing a concave function over a set that is itself compact

and convex. Clearly, it selects contingent contracts that are interim efficient in U .

The Theorem of the Maximum then implies that φ̂ is upper hemi-continuous (F is

continuous, thanks to Lemma 2).

Let then φ : U2 ⇒ U2 be the correspondence defined as follows: φ(x, y) =

(φ̂(xbs|y), φ̂(ybs|x)). This is well-defined since xbs|y and ybs|x belong to Ū (but not

necessarily U). Notice xbs|y is continuous in y and that ybs|x is continuous in x.

Let (x, y) be a fixed-point of φ, by Kakutani’s fixed point theorem. The construc-

tion of φ ensures interim efficiency of x and y, and that E[xi|ti] ≥ E[x
bs|y
i |ti] and

E[yi|ti] ≥ E[ybs|x|ti] for all ti and i. Hence, by Proposition 2, demands (x, y) are

sustained by a pooling conciliatory equilibrium.

The next lemma establishes that if players demands (xn, yn)→ (x, y) as δn → 1,

then x and y must give the same interim utilities

Lemma 6. Consider a sequence of bargaining games with δn → 1 and an associated

sequence of pooling conciliatory equilibria whose demands converge, (xn, yn)→ (x, y).

Then (i) E[xi|ti] = E[yi|ti] for all ti and i, and (ii) x and y are ex-post efficient.

Proof. For (i), observe that in a conciliatory equilibrium, we must have E[xn2 |t2] ≥
E[x

bs|yn
2 |t2] = γnE[yn2 |t2]. In the limit as γn → 1 we must have E[x2|t2] ≥ E[y2|t2].

We must also have E[yn2 |t2] ≥ E[y
bs|xn
2 |t2] ≥ E[xn2 |t2]. Hence E[y2|t2] ≥ E[x2|t2] and

so E[y2|t2] = E[x2|t2], and by identical logic E[y1|t1] = E[x1|t1].

We now prove (ii). If f2(t, x1(t′)) > x2(t′) for some t′, E[yn2 |t′2] ≥ E[y
bs|xn
2 |t′2] and

y
bs|xn
2 (t) ≥ f2(t, γnxn1 (t)) ≥ γnxn2 (t), for all t, imply that E[y2|t′2] ≥ limE[y

bs|xn
2 |t′2] ≥

E[f2(·, x1(·))|t′2] > E[x2|t′2], a contradiction to (i). Suppose now x is not ex-post

efficient. Given f2(t, x1(t)) = x2(t) for all t we must have x1(t′) < u1(t′) for some t′.

Then xn1 (t′) < u1(t′) for large n, and so y
bs|xn
2 (t′) = u2(t′) > f2(t, x1(t′)) = x2(t′). This

implies E[y2|t′2] ≥ limE[y
bs|xn
2 |t′2] > E[f2(·, x1(·))|t′2] ≥ E[x2|t′2], contradicting (i).

Proof of Proposition 3 (C∗(B) is non-empty) Fix a sequence δn → 1, and an

associated sequence of pooling conciliatory equilibria with interim efficient demands

(xn, yn) (see Proposition 7). Since U(t) is compact, we may assume (considering a
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subsequence if needed) (xn, yn) converges to some limit (x, y) as n tends to infinity.

By Lemma 3, x and y are interim efficient. By Lemma 6, E[xi|ti] = E[yi|ti] for all i, ti.

So the limit equilibrium outcome x+y
2

is interim efficient and belongs to C∗(B).

A4 Convergence to Myerson

Proof of Proposition 4

Fix a smooth bargaining problem B, and assume U is comprehensive, that is, v ∈ R2
+

belongs to U(t) as soon as it contains some u ≥ v. To see why this is without loss

of generality, assume U is not comprehensive. Consider its comprehensive closure U

defined at the beginning of the proof for Proposition 7. Notice u(t), u(t), and the

set of interim efficient contingent contracts remain unchanged when considering U(t)

instead of U(t). Similarly, for all x, y in U , xbs|y(t) and ybs|x(t) remain unchanged.

Hence the set of strictly individually rational contingent contracts that belong to

C∗(B) is unchanged when taking the comprehensive closure. The set of Myerson

solutions also remains unchanged. Hence (a) in Proposition 4 holds if we can show it

holds for U , which is comprehensive. As for (b), taking comprehensive closures has

no impact on whether (BC) holds. Based on the above observations, any conciliatory

equilibrium outcome for U is also a conciliatory equilibrium outcome for U . Hence

(b) in Proposition 4 holds if we can show it holds for U , which is comprehensive.

Next, we associate to any weakly efficient u ∈ U(t) a unique positive unit vector

λu(t) that is orthogonal to U(t) at u. This is unequivocally defined if u is strictly

individually rational (U(t) is smooth). What if ui = 0 for some i? Then there could

be multiple orthogonal unit vectors. Define λu(t) by the continuous extension over

strictly individually rational payoff pairs: λu(t) = limm λ
um(t) for any sequence of

strictly individually rational and efficient payoff pair um that converges to u. This is

well-defined since U(t) is smooth.

Take an element c∗ of C∗(B). Let δn → 1 and an associated sequence of pooling

conciliatory equilibria with equilibrium demands (xn, yn), such that (xn, yn)→ (x, y)

and c∗ = x+y
2

. By Lemma 6, x and y are both ex-post efficient. Our proof of

Proposition 4 proceeds in two steps. First, Lemma 7 establishes that Agent 2 must get

at least half of the linearize surpluses Vλx(t) in expectation, while furthermore showing

that this implies x2(t) > u2(t) and hence c∗2(t) > u2(t) if B satisfies (BC). Similarly,

Agent 1 must get at least half of the linearized surpluses Vλy(t) in expectation and
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y1(t) > u1(t) and c∗1(t) > u1(t) given (BC). The second step is Lemma 8, which shows

that, if c∗ is strictly individually rational and interim efficient, then λy = λx and each

agent expects exactly half of the linearized surplus, so c∗ must be a Myerson solution.

Lemma 7. Let Mx(t) = λx(t) · x(t) and My(t) = λy(t) · y(t). Then λx2(t) > 0 and

λy1(t) > 0 and:

E[c∗2|t2] ≥ 1

2
E[
Mx

λx2
|t2], and E[c∗1|t1] ≥ 1

2
E[
My

λy1
|t1]. (7)

Furthermore, if in state t the bargaining problem satisfies (BC) for i = 1, then x2(t) >

u2(t), and if it satisfies (BC) for i = 2, then y1(t) > u1(t), so that if it satisfies (BC)

for i = 1, 2 then c∗i (t) ∈ (ui(t), ui(t)).

Proof. We prove the claims regarding λx, Mx and c∗2(t) with the claims regarding λy,

My and c∗1(t) proved analogously. While x is ex-post efficient by Lemma 6, this need

not be true of xn. Define, therefore, x̄n(t) to be the vertical projection to the utility

possibility frontier: x̄n(t) = (xn1 (t), f2(t, xn1 (t))), where this clearly also converges to

x. By the fact that the bargaining problem is smooth, we have f2(t, .) is continuously

differentiable on the set (u1(t), u1(t)), where this derivative is f ′2(t, .). This function

f ′2 is continuously extended to the closed interval. Clearly, f ′2(t, x̄n1 (t)) = −λn1 (t)

λn2 (t)
,

where λn(t) stands for λx̄
n
(t). Then for some small ε > 0 with λx2(t) 6= ε define

λ̄n2 (t) = max{ε, λn2 (t)}, λ̄n1 (t) = 1−λ̄n2 (t), λ̄x2(t) = max{ε, λx2(t)} and λ̄x1(t) = 1−λ̄x2(t).

Finally, define M̄n(t) = λ̄n(t) · x̄n(t) and M̄x(t) = λ̄(t) ·x(t). For our fixed ε, we claim:

y
BS|xn
2 (t) ≥ M̄n(t)

λ̄n2 (t)
− γn λ̄

n
1 (t)

λ̄n2 (t)
xn1 (t)−O((1− γn)2). (8)

If λx2(t) > ε then λn2 (t) > ε for sufficiently large n and equation (8) holds thanks

to a Taylor’s expansion of Agent 2’s best safe payoff against xn around x̄n(t). The

remainder O((1−γn)2) is a constant times a quadratic factor of the distance between

xn1 (t) and γnxn1 (t); hence dividing it by (1 − γn)2 gives an expression that converges

to a constant as γn → 1 (the smoothness assumption is important here). This is

illustrated in Figure 2, where the the boundary of the linearized utility set Vλn(t) is

the line z2 = M̄n(t)

λ̄n2 (t)
− λ̄n1 (t)

λ̄n2 (t)
z1 which tangent to U(t) at xn(t) (where in this example

xn(t) = x̄n(t) and λn(t) = λ̄n(t)). If on the other hand λx2(t) < ε so that λn2 (t) < ε for

sufficiently large n, then we directly have y
BS|xn
2 (t) > M̄n(t)

λ̄n2 (t)
− γn λ̄

n
1 (t)

λ̄n2 (t)
xn1 (t) for large
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n because the slope of the linearized set is less steep than the slope of the utility

frontier, i.e. −1−ε
ε

= − λ̄n1 (t)

λ̄n2 (t)
> −λn1 (t)

λn2 (t)
= f ′2(t, xn1 (t)). Also, if for all ε > 0 we have

λn2 (t) < ε for large enough n, then we have x(t) = (u1(t), u2(t)). Taking expectations,

E[y
BS|xn
2 |t2] ≥ E[

M̄n

λ̄n2
|t2]− γnE[

λ̄n1
λ̄n2
xn1 |t2]−O((1− γn)2) (9)

Moreover, we also have:

E[
M̄n

λ̄n2
|t2]− E[

λ̄n1
λ̄n2
xn1 |t2] = E[x̄n2 |t2] ≥ E[xn2 |t2] ≥ E[x

BS|yn
2 |t2] = γnE[yn2 |t2]. (10)

The first equality follows from M̄n = λ̄n · x̄n, the first inequality follows from x̄’s

definition, the second inequality follows from equilibrium conditions, and the second

equality follows from the best safe’s definition. So (10) implies

−E[
λ̄n1
λ̄n2
xn1 |t2] ≥ γnE[yn2 |t2]− E[

M̄n

λ̄n2
|t2].

Combining this with (9) and the equilibrium condition E[yn2 |t2] ≥ E[y
BS|xn
2 |t2],

E[yn2 |t2] ≥ E[y
BS|xn
2 |t2] ≥ E[

M̄n

λ̄n2
|t2] + γn

(
γnE[yn2 |t2]− E[

M̄n

λ̄n2
|t2]

)
−O((1− γn)2).

(11)

The above inequality simplifies to

(1− (γn)2)E[yn2 |t2] ≥ (1− γn)E[
M̄n

λ̄n2
|t2]−O((1− γn)2). (12)

Dividing this by (1− (γn)2) = (1− γn)(1 + γn) we get:

E[yn2 |t2] ≥ 1

1 + γn
E[
M̄n

λ̄n2
|t2]−O(1− γn) (13)

Since xn → x and x̄n → x, we have λ̄n → λ̄x and M̄n → M̄x. Taking the limit of

(13) as n→∞, and noting E[xi|ti] = E[yi|ti] by Lemma 6 we get:

E[y2|t2] = E[x2|t2] = E[c∗2|t2] ≥ 1

2
E[
M̄x

λ̄x2
|t2]. (14)
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Taking ε → 0 we have M̄x(t)

λ̄x2 (t)
→ Mx(t)

λx2 (t)
so long as λx2(t) > 0. If λx2(t) = 0 then M̄x(t)

λ̄x2 (t)

explodes as ε → 0, contradicting the feasibility of equation (14) for all ε sufficiently

small. This establishes that λx2(t) > 0 and equation (7). Given that λx2(t) > 0 it

is clear that when u2(t) > 0 we must have x2(t) > u2(t) and x1(t) < u1(t) because

otherwise we would have λx2(t) = 0 when x2(t) = u2(t) > 0. Finally, suppose x2(t′) =

u2(t′) = 0 and so x1(t′) = u1(t′) for some t′ ∈ T (t2). Then equation (14) implies:

∑
t∈T (t2)\{t′}

p(t)

p(t2)
x2(t) = E[x2|t2] ≥ 1

2
E[
Mx

λx2
|t2]

≥ 1

2p(t2)
[
λx1(t′)

λx2(t′)
p(t′)u1(t′) +

∑
t∈T (t2)\{t′}

p(t)x2(t)]

This is impossible if T (t2) = {t′}, so suppose otherwise. Rearrange the far left and

right terms above and use
λx1 (t′)

λx2 (t′)
= − 1

f ′1(t′,0)
and x2(t) ≤ u2(t) to get:

−f ′1(t′, 0) ≥ p(t′)u1(t′)∑
t∈T (t2)\{t′} p(t)x2(t)

≥ p(t′)u1(t′)∑
t∈T (t2)\{t′} p(t)u2(t)

Clearly, this cannot hold if the bargaining problem satisfies (BC).

Lemma 8. If c∗ is interim-efficient and strictly individually rational, then it is a

Myerson solution.

Proof. If c∗ is interim efficient then it is ex-post efficient, and so λx(t) = λy(t), call

it λ(t), and Mx = My = M = λ(t) · c∗(t) (Mx and My are defined in the proof

of Lemma 7). This is the unique orthogonal vector at c∗(t) given that c∗ is strictly

individually rational. By Lemma 7 we know λi(t) > 0 for all i. By Lemma 1, c∗ being

interim efficient implies there exists a vector λ̂ ∈ RT1
++ × RT2

++ such that λi(t) = λ̂i(ti)
p(ti)

for all i and t. Hence (7) implies

λ̂i(ti)E[c∗i |ti] ≥ p(ti)E[
M

2
|ti]. (15)

Summing up the inequalities in equation (15) over t1 and over t2, we get:∑
i=1,2

∑
ti∈Ti

λ̂i(ti)E[c∗i |ti] ≥ E[M ], (16)
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Using the definitions of M(t) and λ̂i(ti), we have:∑
i

∑
ti∈Ti

λ̂i(ti)E[c∗i |ti] =
∑
i=1,2

∑
ti∈Ti

λ̂i(ti)
∑

t−i∈T−i

p(t−i|ti)c∗i (t)

=
∑
t∈T

∑
i=1,2

p(t−i|ti)λ̂i(ti)c∗i (t)

=
∑
t∈T

p(t)
∑
i=1,2

λi(t)c
∗
i (t)

= E[M ]

But then (16) must hold with equality, and hence (15) must also hold with equality

for each i = 1, 2, which means c∗ is a Myerson solution.

A5 Sequential Equilibria

Proof of Proposition 5 (Interim Efficiency at the Limit)

For this proposition, B is assumed to be smooth and satisfy (SBC) if |Ti| > 2 for some

i. As explained in the main text, we can also assume without loss of generality that p

is uniform. Suppose c∗ ∈ C∗(B) is not interim efficient. Let δn → 1 and consider an

associated sequence of conciliatory equilibria. These need not be pooling equilibria,

so let xn(t) and yn(t) correspond to agents actual equilibrium demands in state t. In

other words, xn(t1, t2) is the demand of type t1 in state (t1, t2) (rather than of type

t′1) and yn(t1, t2) is the demand of type t2. Considering a subsequence if necessary,

let (xn, yn) → (x, y) and c∗ = x+y
2

. By Lemma 6, x and y are both ex-post efficient

and E[xi|ti] = E[yi|ti] = E[c∗i |ti] so that x and y are not interim efficient either. To

get closer to the proof sketch provided in the main text, we would like to focus on

type subsets with two elements for each agent. To do this, we could apply Lemma 5

to x. Unfortunately, while we know that x1(t) < u1(t) for all t, by Lemma 7 ((SBC)

implies (BC)), we cannot be sure that x1(t) > u1(t), for all t. We must consider a

complementary lemma to cover this case, which is proved in the Online Appendix.

Lemma 9. If x1(t) = u1(t) for some t, then there are T ′i ⊂ Ti for i = 1, 2 with

|T ′i | = 2 and a contract e∗ that interim dominates x when restricted to T ′1 × T ′2.

If |Ti| > 2 for some agent i, then we know by Lemmas 5 and 9 that there is T ′j ⊂ Tj

for j = 1, 2 with |Tj| = 2 such that x is not interim efficient restricted to T ′1 × T ′2. If
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|Ti| = 2 then let T ′i = Ti. By Lemma 4, x is not weakly interim efficient restricted to

T ′1 × T ′2, and so there is some alternative (ex-post efficient) contract e which strictly

interim dominates x when restricted to T ′1 × T ′2. Let e∗ be defined by e∗ = e(t) if

t ∈ T ′1 × T ′2 and e∗(t) = x(t) otherwise. Clearly we have E[e∗i |ti] > E[xi|ti] for all

ti ∈ T ′i and i = 1, 2. Furthermore, let en be defined by en = e(t) if t ∈ T ′1 × T ′2 and

en(t) = ŷbs|x
n
(t) otherwise.24 Given that ŷbs|x

n
(t) → x(t), we clearly have en → e∗

and hence E[eni |ti] > E[xni |ti] for all ti ∈ T ′i and i = 1, 2 for sufficiently large n.

Consider a unilateral deviation for Agent 2, who proposes en. We show this

deviation is profitable for some type in T ′2 when n is large. The first step is to show

that, for all sufficiently large n, some type of Agent 1 in T ′1 is conciliatory after this

deviation. Since e∗ strictly interim dominates x when restricted to T ′1 × T ′2, we have:∑
t∈{t1}×T ′2

(e∗1(t)− x1(t))p(t) > 0 and
∑

t∈{t2}×T ′1

(e∗2(t)− x2(t))p(t) > 0 (17)

for all t1 ∈ T ′1 and t2 ∈ T ′2. If Agent 1 believes that 2 is conciliatory, then his

payoff difference from being conciliatory instead of aggressive following the deviation

is 1
2
(en1 (t) − γnxn1 (t)) in state t. Let µ1(t|t1, en) be the probability that Agent 1

attributes to state t after 2’s deviation, when of type t1. Type t1 ∈ T1 is certainly

conciliatory following en if

µn1 (T ′1 × T ′2|t1, en)[
∑

t∈T (t1)∩T ′1×T ′2

(en1 (t)− γnxn1 (t))µn1 (t|t1, en, T ′2)]

+ (1− µn1 (T ′1 × T ′2|t1, en))[
∑

t∈T (t1)\T ′1×T ′2

(en1 (t)− γnxn1 (t))µn1 (t|t1, en, T2\T ′2)] > 0.

As argued in the paper, we can assume an agent is always conciliatory if offered his

best safe payoff in every state he considers possible. Hence, if µn1 (T ′1 × T ′2|t1, en) = 0

then Agent 1 is certainly conciliatory, in particular if t1 6∈ T ′1. Suppose µn1 (T ′1 ×
T ′2|t1, en) > 0. Clearly en1 (t) − γnxn1 (t) ≥ 0 if t 6∈ T ′1 × T ′2, and so type t1 ∈ T ′1

must be conciliatory if
∑

t∈{t1}×T ′2
(en1 (t) − γnxn1 (t))µn1 (t|t1, en, T ′2) > 0. Considering a

subsequence if needed, say µn1 (t|t1, T ′2, en) converges to µ∗1(t|t1, T ′2). As γnxn → x,

24Remember the definition of ŷbs|x
n

introduced at the very end of Section 3. It’s derived from
ybs|x

n

to guarantee feasibility and ex-post efficiency.
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t1 ∈ T ′1 is conciliatory for all large n if∑
t∈{t1}×T ′2

(e∗1(t)− x1(t))µ∗1(t|t1, T ′2) > 0. (18)

By (17), e∗2(t′) > x2(t′) for some t′ = (t′1, t
′
2) and so e∗1(t′) < x1(t′) where we let T ′i =

{t′i, t′′i }. As in footnote 25, we must have e∗2(t′1, t
′′
2) < x2(t′1, t

′′
2), e∗2(t′′1, t

′′
2) > x2(t′′1, t

′′
2)

and e∗2(t′′1, t
′
2) < x2(t′′1, t

′
2). Ex-post efficiency of e∗ and x also implies e∗2(t′1, t

′
2) >

x2(t′1, t
′
2), e∗1(t′1, t

′′
2) > x1(t′1, t

′′
2), e∗1(t′′1, t

′′
2) < x1(t′′1, t

′′
2), and e∗1(t′′1, t

′
2) > x1(t′′1, t

′
2). Sup-

pose now, contradictory to what we set out to prove, that neither t′1, nor t′′1, take a

conciliatory stand. Hence equation (18) is violated for both types, and it must be that

µ∗1((t′1, t
′
2)|t′1, T ′2) >

p(t′1,t
′
2)

p(t′1×T ′2)
=

p(t′′1 ,t
′
2)

p(t′′1×T ′2)
> µ∗1((t′′1, t

′
2)|t′′1, T ′2) (where the equality follows

from assuming p is uniform from the start, without loss). Since equilibria along the

sequence are sequential, it must be µ∗1((t′1, t
′
2)|t′1, T ′2) = µ∗1((t′′1, t

′
2)|t′′1, T ′2). It follows

from this contradiction that, as claimed, at least one of t′1 and t′′1 is conciliatory after

en, for all large n. Without loss, assume this is type t′′1 for all sufficiently large n. Say

type t′1 is conciliatory following en with probability αn ∈ [0, 1] and assume αn → α

(consider a subsequence if needed).

We established above that e∗2(t′′1, t
′′
2) > x2(t′′1, t

′′
2) while e∗2(t′1, t

′′
2) < x2(t′1, t

′′
2). Agent

2 offering en and being conciliatory following Agent 1’s offer of xn ensures a limiting

utility for type t′′2 of:

p(t′1|t′′2)[α
e∗2(t′1, t

′′
2) + x2(t′1, t

′′
2)

2
+ (1− α)x2(t′1, t

′′
2)] + p(t′′1|t′′2)

e∗2(t′′1, t
′′
2) + x2(t′′1, t

′′
2)

2

+
∑

t1∈T1\T ′1

p(t1|t′′2)x2(t1, t
′′
2).

This is decreasing in α given that e∗2(t′1, t
′′
2) < x2(t′1, t

′′
2), and so is minimized when

α = 1. However, weknow that e∗ strictly interim dominates x when restricted to

T ′1 × T ′2, implying E[e∗2|t′′2, T ′1] > E[x2|t′′2, T ′1] and so the above deviation payoff is

strictly larger than the limit of type t′′2 equilibrium payoffs E[x2|t′′2] = E[c∗2|t′′2]. Hence,

deviating to en must be profitable for large n. �
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